skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Upadhyay, Suryansh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Security and reliability are primary concerns in any computing paradigm, including quantum computing. Currently, users can access quantum computers through a cloud-based platform where they can run their programs on a suite of quantum computers. As the quantum computing ecosystem grows in popularity and utility, it is reasonable to expect that more companies including untrusted/less-trusted/unreliable vendors will begin offering quantum computers as hardware-as-a-service at varied price/performance points. Since computing time on quantum hardware is expensive and the access queue could be long, the users will be motivated to use the cheaper and readily available but unreliable/less-trusted hardware. The less-trusted vendors can tamper with the results, providing a sub-optimal solution to the user. For applications such as, critical infrastructure optimization, the inferior solution may have significant socio-political implications. Since quantum computers cannot be simulated in classical computers, users have no way of verifying the computation outcome. In this paper, we address this challenge by modeling adversarial tampering and simulating it's impact on both pure quantum and hybrid quantum-classical workloads. To achieve trustworthy computing in a mixed environment of trusted and untrusted hardware, we propose an equitable distribution of total shots (i.e., repeated executions of quantum programs) across hardware options. On average, we note ≈ 30X and ≈ 1.5X improvement across the pure quantum workloads and a maximum improvement of ≈ 5X for hybrid-classical algorithm in the chosen quality metrics. We also propose an intelligent run adaptive shot distribution heuristic leveraging temporal variation in hardware quality to user's advantage, allowing them to identify tampered/untrustworthy hardware at runtime and allocate more number of shots to the reliable hardware, which results in a maximum improvement of ≈ 190X and ≈ 9X across the pure quantum workloads and an improvement of up to ≈ 2.5X for hybrid-classical algorithm. 
    more » « less
  3. The size of transistors has drastically reduced over the years. Interconnects have likewise also been scaled down. Today, conventional copper (Cu)-based interconnects face a significant impediment to further scaling since their electrical conductivity decreases at smaller dimensions, which also worsens the signal delay and energy consumption. As a result, alternative scalable materials such as semi-metals and 2D materials were being investigated as potential Cu replacements. In this paper, we experimentally showed that CoPt can provide better resistivity than Cu at thin dimensions and proposed hybrid poly-Si with a CoPt coating for local routing in standard cells for compactness. We evaluated the performance gain for DRAM/eDRAM, and area vs. performance trade-off for D-Flip-Flop (DFF) using hybrid poly-Si with a thin film of CoPt. We gained up to a 3-fold reduction in delay and a 15.6% reduction in cell area with the proposed hybrid interconnect. We also studied the system-level interconnect design using NbAs, a topological semi-metal with high electron mobility at the nanoscale, and demonstrated its advantages over Cu in terms of resistivity, propagation delay, and slew rate. Our simulations revealed that NbAs could reduce the propagation delay by up to 35.88%. We further evaluated the potential system-level performance gain for NbAs-based interconnects in cache memories and observed an instructions per cycle (IPC) improvement of up to 23.8%. 
    more » « less